(Thesis Final Presentation)

By
Muhammad Yousaf Khan
FA11-REE-030
Supervised by
Dr. Nadeem Javaid
Dr. Mahmood Ashraf Khan

Centre for Advanced Studies in Telecommunications
Publication

Outline

- Summary
- Related Work/ Past Work
- Motivation
- Radio Model
- Proposed Schemes
- Simulation Results
- Applications
- Conclusion
Summary

- Wireless sensors are limited energy devices
- Reduce the energy consumption
- Lifetime and scalability need to be increased
- Energy efficient protocol should be designed
- Proposed Schemes (H-DEEC and MH-DEEC) aims at fulfilling all these requirements
Related Work/ History

- Deployment Scenarios (Planned, Random, Fixed and Dynamic)
- Position of BS
- Communication Standards for WSNs (Bluetooth, WiFi, ZigBee and DASH7)
- Heterogeneous Routing Schemes (SEP and DEEC)
- Clustering Schemes (LEACH, SEP and DEEC)
- Multi Hoping/Chain Forming Approaches (PEGASIS, EEPB, IEEPB)
Related Work/ History…

- Deployment Scenario
 - Planned Deployment
 - Random Deployment
 - Fixed Deployment
 - Dynamic or Mobile
Related Work/ History…

- **Communication Standards**
 - **ZigBee** (IEEE 802.15.4, Low Powered, @ 2.4GHz, 250KB/s)
 - **Wi-Fi** (IEEE 802.11, High Powered, @ 2.5GHz, 54MB/s)
 - **DASH7** (ISO 18000-7, Low Powered, @ 433MHz, 200KB/s)
Journey of WSNs in Routing Layer

- Classical Routing Schemes
 - Direct Transmission (DT)
 - Minimum Transmission Energy (MTE)
- Clustering Schemes

(i) Random Deployment (ii) MTE (iii) DT
Journey of WSNs in Routing Layer…

- Clustering Schemes
 - LEACH (Homogeneous, Periodical selection of Cluster Heads)
 - SEP (2-level Heterogeneity, Periodical Selection of Cluster Heads)
 - DEEC (Multi-level Heterogeneity, Energy aware clustering)
Journey of WSNs in Routing Layer…

- LEACH (Homogeneous, Periodical selection of Cluster Heads)

(i) At time $t=0$

(ii) At time $t+\alpha$
Journey of WSNs in Routing Layer…

- **SEP** (2-level Heterogeneity, Periodical Selection of Cluster Heads)
Journey of WSNs in Routing Layer...

- DEEC (Multi-level Heterogeneity, Energy aware clustering)
Journey of WSNs in Routing Layer...

Chain Based Routing Schemes

- **PEGASIS** (Greedy Approach Based Algorithm)
- **EEPB** (Distance and Energy Based Leader Selection)
- **IEEPB** (Weighting Factor Introduced, Multi Edged, Avoiding Long Links)
Journey of WSNs in Routing Layer...

EEPB (Distance and Energy Based Leader Selection)
Related Work/ History…

IEEPB (Weighting Factor Based Leader Selection)
Motivation

• Similar Approaches for different application doesn’t work
• A technique has to be proposed which can perform better in real time scenario as well.
• Drawbacks of certain classical approaches like
 – LEACH (Clustering scenario, un-balance energy utilization)
 – SEP (Limited energy levels)
 – DEEC (Direct communication of Clusterheads)
 – All above technique are not applicable if shape of networks changes.
 – PEGASIS (Data Packet has to transverse from too many Hops)
 – EEPB (Long Link Problem)
 – Base Station Position dependent Scenarios.
Radio Model

- Energy consumed by a sensor is directly proportional to
 - Transmission distance \((d)\)
 - Packet size \((L)\)
Radio Model

Energy dissipated by Transmitter and Receiver circuitry

<table>
<thead>
<tr>
<th>Operation</th>
<th>Energy Dissipated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter Electronics ($E_{Tx-elec}$)</td>
<td>50 nJ/bit</td>
</tr>
<tr>
<td>Receiver Electronics ($E_{Rx-elec}$)</td>
<td></td>
</tr>
<tr>
<td>($E_{Tx-elec} = E_{Rx-elec} = E_{elec}$)</td>
<td></td>
</tr>
<tr>
<td>Transmit Amplifier (e_{amp})</td>
<td>100 pJ/bit/m2</td>
</tr>
</tbody>
</table>

Energy for Tx amplifier to achieve an acceptable E_b/N_0
Proposed Schemes

- (Hybrid DEEC) H-DEEC
- (Multi-edged chained Hybrid DEEC) MH-DEEC
H-DEEC
H-DEEC

- Random Deployment
- Heterogeneous Network \([E_0, E_0(1+a_{max})]\)
- Network is divided into two parts
 - Normal Nodes
 - Beta Nodes

Hybrid = Clustering + Chain forming
H-DEEC

• Our proposed scheme divided into different phases
 – Initializing the Network
 • Distance from BS will be broadcasted by BS.
 – Chain forming
 – Clustering
 – Data Transmission Phases
H-DEEC (Clustering)

- For Balancing the energy consumption DEEC is used for clustering.
- Cluster Heads will be elected on the base of residual energy (Nodes with higher energy will be more probable to elect as a Cluster Head of respective cluster)

\[p_i = \frac{p_{opt} N (1 + a) E_i(r)}{(N + \sum_{i=1}^{N} a_i) \bar{E}(r)} \]

where

- \(p_i \) is the probability of a node to be clusterhead
- \(p_{opt} \) is the optimum probability of selection of cluster heads
- \(E_i(r) \) is residual energy of the node.
- \(N \) is the total number of nodes
- \(r \) is the current round
- \(a_i \) is the additional energy factor
- \(G \) is the set of nodes eligible for becoming a Cluster Head

\[T(s_i) = \begin{cases} \frac{p_i}{1 - p_i(r \mod \frac{1}{p_i})} & \text{if } s_i \in G \\ 0 & \text{otherwise} \end{cases} \]
H-DEEC(Chain Forming)

• Beta Nodes will do multi-hopping and the sequence of Hops is elected on the basis of Greedy approach (PEGASIS).
• Leader is selected on the basis of distance of beta node to the base stations.
• Long Link Problem
MH-DEEC

![Diagram of network with 100m x 100m grid, indicating different node types: Normal Node, Beta Nodes, Cluster Head, Leader Node.](image-url)
MH-DEEC(Chain Forming)

• Chain forming Scenario is modified
• Nodes position will be broadcasted by the BS when network will be initiated.
• Leader is selected on the base of weight of every beta node
MH-DEEC(Chain Forming)

- **Leader Selection Phase**

 \[E_p = \frac{E_{init_b}}{E_{i_b}(r)} \]

 where \(E_{init_b} \) is the initial energy of beta nodes and \(E_{i_b}(r) \) is the residual energy of beta node.

 \[D_{toBS} = \frac{d_{toBS}^4}{d_{avg}^4} \]

 where \(d_{toBS} \) is the distance of beta node from BS and \(d_{avg} \) is the average distance of beta nodes from BS.

 Weighting factor is calculated as:

 \[W_i = w_1 E_p + w_2 D_{toBS} \]

 Where

 \[w_1 + w_2 = 1 \]
MH-DEEC(Clustering)

- Same as done in DEEC
- On the basis of initial and residual energy
Simulation Results
Simulation Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network size</td>
<td>100m × 100m</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>100</td>
</tr>
<tr>
<td>BS position</td>
<td>(30m,150m)</td>
</tr>
<tr>
<td>Packet size</td>
<td>4000 bits</td>
</tr>
<tr>
<td>P_{opt}</td>
<td>0.1</td>
</tr>
<tr>
<td>E_0</td>
<td>0.5 J</td>
</tr>
<tr>
<td>E_{elec}</td>
<td>5 nJ/bit</td>
</tr>
<tr>
<td>Distance threshold (d_0)</td>
<td>70m</td>
</tr>
<tr>
<td>ϵ_{amp}</td>
<td>10pJ/bit/m2</td>
</tr>
<tr>
<td>ϵ_{fs}</td>
<td>0.0013pJ/bit/m4</td>
</tr>
<tr>
<td>Simulation Tool</td>
<td>Matlab</td>
</tr>
<tr>
<td>Communication Standard</td>
<td>ZigBee (assumption)</td>
</tr>
</tbody>
</table>
Stability Graph

Number of Alive nodes vs Number of Rounds for different algorithms:
- MH-DEEC
- H-DEEC
- DEEC
- SEP
Stability Graph

• Stability time is greater than all other classical approaches which will avoid coverage holes
• Shows the efficient and balanced utilization of energy.
• Network lifetime is greater than DEEC and SEP
• Stability Graph Comparison (approx.)

<table>
<thead>
<tr>
<th>Protocols</th>
<th>SEP</th>
<th>DEEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-DEEC</td>
<td>38%</td>
<td>35%</td>
</tr>
<tr>
<td>MH-DEEC</td>
<td>61%</td>
<td>60%</td>
</tr>
</tbody>
</table>
Throughput Graph
Throughput Graph Comparison

<table>
<thead>
<tr>
<th>Protocols</th>
<th>SEP</th>
<th>DEEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-DEEC</td>
<td>93%</td>
<td>57%</td>
</tr>
<tr>
<td>MH-DEEC</td>
<td>90%</td>
<td>45%</td>
</tr>
</tbody>
</table>
Applications

- Battle Fields Monitoring
- Borders Monitoring
- Crops Monitoring
- Forest Fire Monitoring
- Underground Networks for soil monitoring
- Linear Networks
- Underground Mine Monitoring
- Linear Network Application
- Body Area Network

Centre for Advanced Studies in Telecommunication (CAST), CIIT, Islamabad
Future Work

- Working on Practical Sensor Nodes
- Application for the underground mine sensor Network
- Publication to be submitted in ICC 2014
- Wizzi motes
Conclusion

- Efficient energy utilization is a serious issue in WSNs and H-DEEC and MH-DEEC are energy efficient.
- Both protocol achieving greater stability time and throughput.
- Balanced and Efficient energy utilization
Tools

- Matlab® → For simulations
- Latex → For writing the manuscript and paper
- Inkscape → For figure formatting
- Microsoft Visio → For drawing the diagrams
Questions???