Density controlled-Divide and Rule Scheme for Energy Efficient Routing in WSNs

Prepared by Ashfaq Ahmad (BS Telecom Engg Student)

A. Ahmad1, K. Latif1, N. Javaid1, Z. A. Khan2, U. Qasim3

1COMSATS Institute of IT, Islamabad, Pakistan.
2Faculty of Engineering, Dalhousie University, Halifax, Canada.
3University of Alberta, Alberta, Canada.

April 17, 2013
Motivation

Objectives

- Stability period enhancement
- Instability period reduction
- Network lifetime enhancement
- Throughput maximization
- Delay minimization
Motivation...

Problems in existing work

- Non uniform distribution of load
- Coverage hole formation
- Energy hole formation
Proposed Scheme

- Cluster formation
- Energy consumption in different segments
- CH selection and energy consumption of CH
Proposed scheme...

Cluster formation

- Static clustering technique is used
- Nodes are uniformly distributed in the network but randomly distributed in the clusters
- BS segmentizes network area into segments called clusters
- Segmentation reduces the communication distance
Proposed scheme...

Energy consumption in different segments

- Energy consumption in I_s segment

$$E_{I_s}^{T_x} = 4\rho d^2 T_{Energy} \quad (1)$$

- Energy consumption in M_s segments

$$E_{M_s/Seg}^{T_x} = 4(3\rho d^2 - 1) T_{Energy} \quad (2)$$

- Energy consumption in O_s segments

$$E_{O_s/Seg}^{T_x} = 4(3\rho d^2 - 1) T_{Energy} \quad (3)$$

where, $\rho =$ node density
Proposed scheme...

CH selection

- New CH is selected in each round, in each segment
- Node with minimum distance from central reference point is selected first, then second least, third least and so on
- Number of CHs in each round remain x throughout network operation
- In order to reduce communication distance multi-hop communication strategy is adopted in inter-cluster communication
Proposed scheme...

Energy consumption of CH

- O_s CHs transmit their cluster members data to CHs of M_s. Thus, they consume transmit energy only
- M_s CHs aggregate data from O_s CHs with their own and transmit it to BS. So, they consume receive, aggregate and transmit energies
Performance Evaluation

Performance metrics and Simulator used

- Stability period
- Network lifetime
- Throughput
- Optimum number of CHs

MATLAB R2011
Performance Evaluation...
Assumptions and Radio parameters

- Nodes are equipped with initial energy of 0.5J
- Network field, 100m²
- Total number of nodes are 100

\[E_{elec} = E_{tx} = E_{rx} = 50nJ/\text{bit} \]
\[E_{DA} = 5nJ/\text{bit/signal} \]
\[E_{fs} = 10pJ/\text{bit/m}^2 \]
\[E_{mp} = 0.0013pJ/\text{bit/m}^4 \]
Performance evaluation...
Stability period and Network lifetime

- DDR clustering approach minimizes communication distances and optimum number of CHs remain same in each round which, ultimately enhances stability period of the network
- Balanced energy utilization and avoidance of coverage hole enhances the network lifetime
Performance evaluation...

Throughput

- Enhanced stability period and network lifetime, increase DDR’s throughput
Conclusion

- DDR is based on static clustering and optimum number of CH selection in each round
- Segmentation process helps to reduce communication distance between node and CH, and between CH and BS
- Multi-hop communication in inter-cluster further reduces communication distance
- We have tried to overcome the problem of coverage hole and energy hole through density controlled uniform distribution of nodes in different segments of network
- Optimum number of CHs in each round helps to achieve balanced load distribution